Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing all 1’s and return its area.
For example, given the following matrix:
1 2 3 4
| 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0
|
Return 4.
To finish this, please implement this first: Maximal Rectangle
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
| public class MaximalSquare { public int maximalSquare(char[][] matrix) { if (matrix == null || matrix.length == 0 || matrix[0].length == 0) { return 0; }
int h = matrix.length; int w = matrix[0].length; int[][] map = new int[h][w + 1]; for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { if (i == 0) { map[i][j] = matrix[i][j] - '0'; } else { if (matrix[i][j] == '0') { map[i][j] = 0; } else { map[i][j] = 1 + map[i - 1][j]; } } } }
int max = 0; for (int i = 0; i < h; i++) { max = Math.max(max, helper(map[i])); }
return max; }
private int helper(int[] height) { if (height == null || height.length == 0) { return 0; }
Stack<Integer> stack = new Stack<Integer>(); int crt, max; crt = max = 0; while (crt < height.length) { if (stack.isEmpty() || height[crt] >= height[stack.peek()]) { stack.push(crt++); } else { int top = stack.pop(); int length = Math.min(height[top], (stack.isEmpty() ? crt : crt - stack.peek() - 1)); max = Math.max(max, length * length); } }
return max; } }
|