Given an array with n integers, you need to find if there are triplets (i, j, k) which satisfies following conditions:
- 0 < i, i + 1 < j, j + 1 < k < n - 1
- Sum of subarrays (0, i - 1), (i + 1, j - 1), (j + 1, k - 1) and (k + 1, n - 1) should be equal.
where we define that subarray (L, R) represents a slice of the original array starting from the element indexed L to the element indexed R.
Example:
1 2 3 4 5 6 7 8
| Input: [1,2,1,2,1,2,1] Output: True Explanation: i = 1, j = 3, k = 5. sum(0, i - 1) = sum(0, 0) = 1 sum(i + 1, j - 1) = sum(2, 2) = 1 sum(j + 1, k - 1) = sum(4, 4) = 1 sum(k + 1, n - 1) = sum(6, 6) = 1
|
Note:
- 1 <= n <= 2000.
- Elements in the given array will be in range [-1,000,000, 1,000,000].
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| public class Solution { public boolean splitArray(int[] nums) { if (nums == null || nums.length < 7) { return false; } int[] sum = new int[nums.length]; sum[0] = nums[0]; for (int i = 1; i < nums.length; i++) { sum[i] += sum[i - 1] + nums[i]; }
for (int j = 3; j < nums.length - 3; j++) { Set<Integer> set = new HashSet<>(); for (int i = 1; i < j - 1; i++) { if (sum[i - 1] == sum[j - 1] - sum[i]) { set.add(sum[i - 1]); } } for (int k = j + 1; k < nums.length - 1; k++) { if (sum[k - 1] - sum[j] == sum[nums.length - 1] - sum[k] && set.contains(sum[k - 1] - sum[j])) { return true; } } } return false; } }
|